

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT

# **Faculty of Science**

Bachelor of Science (B.Sc.) SUBJECT: PHYSICS B.Sc. I Semester Paper-Major

NANOTECHNOLOGY

#### **Course Outcome**

| CLO<br>No. | Course Outcomes                                                                                                                                      | Cognitive       |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|            |                                                                                                                                                      | Level*          |
| CO -I      | Students will be able to Solve the homogeneous and non-<br>homogeneous linear differential equations of second order with<br>constant coefficients.  | U, R            |
| CO -II     | Students will be able to explain fundamentals of atomic structure.                                                                                   | U, R, Ap, E     |
| CO -III    | Students will be able to understand the basic elements of crystal<br>structure of material and classification of solids according to<br>energy band. | R, U, Ap, An, E |
| CO -IV     | Students will recognize the history background and the nature of nano science and nano technology.                                                   | R, U            |
| CO -V      | Students will understand the origin and use of basic concepts of quantum physics.                                                                    | U, R ,Ap,C,E    |





Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT

## **Credit and Marking Scheme**

|                   | Credita | Marks    |          | Total Marka |
|-------------------|---------|----------|----------|-------------|
|                   | Credits | Internal | External | Total Marks |
| Theory + Tutorial | 6       | 40       | 60       | 100         |
| Total             | 6       |          | 100      |             |

## **Evaluation Scheme**

|        | Marks                        |                          |
|--------|------------------------------|--------------------------|
|        | Internal                     | External                 |
| Theory | 3 Internal Exams of 20 Marks | 1 External Exams         |
|        | (During the Semester)        | (At the End of Semester) |
|        | (Best 2 will be taken)       |                          |





Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT

# **Content of the Course**

#### Theory

**No. of Lectures (in hours per week):** 4.5 Hrs. per week **Total No. of Lectures:** 60 Hrs.+ Tutorials (5 Hrs.) **Maximum Marks:** 60

| Units | Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No.of<br>Lectures |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1     | Mathematical tools for NanoScience<br>Differential equation: Order and degree of differential equation, ordinary and partial<br>differential equations, Linear differential equation ;1st order homogeneous differential<br>equations, 2nd order homogeneous and non-homogeneous differential equations with<br>constant coefficients and its solutions, Examples Linear Differential equations in<br>Physics, Solution of differential equation using Python / Mathematica.                                                                                                                                                            | 13                |
| 11    | <b>Fundamentals of Atomic Structure and Bonding</b><br>Bohr's atomic structure, Bohr's atomic radii, comparative size of nano-materials and<br>atomic size, electronic configuration, energy levels of shells and related numerical<br>problems on excitation of electrons from lower to higher energy level. Concept of<br>quantization of energy. Arrangement of atoms in solids (two dimension crystal<br>structures and three dimension crystal structure). Molecular Orbital Theory, bonding<br>and ant-bonding states. Electronic structure of solids.                                                                            | 13                |
| 111   | <b>Crystal Structure</b><br>Crystalline and amorphous state of solids, unit cells and space lattices, crystal structures(Simple <i>bcc</i> , and <i>fcc</i> ), crystal planes and directions, Miller indices, diffraction of X-rays by crystal, Bragg's equation, reciprocal lattice, crystal defects, point, line and surface defects.<br><b>Semiconductors and Their Properties</b><br>Origin of energy bands in solids, Classification of solids: conductor, insulator and semiconductor Band model of semiconductors, intrinsic and extrinsic semiconductors, Fermi level, variation of conductivity and mobility with temperature. | 13                |
| IV    | <b>Introduction of Nano-science:</b><br>History of nano- materials, Michael Faraday and divided metals, story of Damascus sword. stained glass windows. How nanoworld is different from world around us, what is nano? Beginning of nano Science; Feynman's "there is plenty of room at the bottom", contribution of India in nano-science and nanotechnology<br>Nanotechnology timeline, Pre-18 <sup>th</sup> , Century, 19th Century, 20th Century and 21st Century. Introduction to Nano-science and Nano-technology, Nano-scale material,                                                                                           | 13                |





Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT

|   | implications for Physics, Chemistry, Engineering & Biology, and Motivation for<br>Nanotechnology study. History & development of Nano-science and Nano-<br>technology with the emphasis on history of Nano-metals.                                                                                                                                                              |    |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| V | V: Basic Concepts of Quantum Theory -I<br>Importance of Quantum theory, Wave-particles duality, de-Broglie and Fermi<br>Wavelengths, Concept of wave packet and wave functions, Normalized and<br>orthogonal wave function Group velocity and phase velocity, Dynamical operators,<br>expectation values, Uncertainty principle, Quantum numbers, Pauli exclusion<br>principle. | 13 |

### References

#### **Test/Reference Books:**

- 1. Advanced Engineering Mathematics by Erwin Kreyszig
- 2. C. Kittle. Introduction to Solid State Physics
- 2. S.O. Pillai Solid State Physics
- 3. A.J. Decker, Solid State Physics
- 4. Solid State Physics Puri & Babber
- 5. Textbook of Nano-science and Nanotechnology by Murthy Raj Shankar Rath Murd
- 6. Nanotechnology an Introduction to Synthesis Properties and Applications of Nanomaterials by Thomas Verghese and K.M.Balkrishna.
- 7. Nanophysics and Nanotechnology by Wolf Edward
- 8. The Physics and Chemistry of Solids by Stephen Elliott & S. R. Elliott, John Wiley & Sons, 1998.
- 9. Quantum Mechanics Concept and Applications by Nouredine Zettili

#### Web Links:

- 1) NPTEL: Material Science https://nptel.ac.in/courses/112/108/112108150/
- 2) NPTEL: Quantum Mechanics https://nptel.ac.in/courses/115/101/115101107/